EXPLICIT n-DESCENT ON ELLIPTIC CURVES II. GEOMETRY
نویسنده
چکیده
This is the second in a series of papers in which we study the n-Selmer group of an elliptic curve. In this paper, we show how to realize elements of the n-Selmer group explicitly as curves of degree n embedded in Pn−1. The main tool we use is a comparison between an easily obtained embedding into Pn2−1 and another map into Pn2−1 that factors through the Segre embedding Pn−1×Pn−1 → Pn2−1. The comparison relies on an explicit version of the local-to-global principle for the n-torsion of the Brauer group of the base field.
منابع مشابه
A descent method for explicit computations on curves
It is shown that the knowledge of a surjective morphism $Xto Y$ of complex curves can be effectively used to make explicit calculations. The method is demonstrated by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve with period lattice $(1,tau)$, the period matrix for the Jacobian of a family of genus-$2$ curves complementing the classi...
متن کامل2 0 N ov 2 00 6 EXPLICIT n - DESCENT ON ELLIPTIC CURVES II . GEOMETRY
This is the second in a series of papers in which we study the n-Selmer group of an elliptic curve. In this paper, we show how to realize elements of the n-Selmer group explicitly as curves of degree n embedded in P n−1. The main tool we use is a comparison between an easily obtained embedding into P
متن کاملEXPLICIT n-DESCENT ON ELLIPTIC CURVES I. ALGEBRA
This is the first in a series of papers in which we study the n-Selmer group of an elliptic curve, with the aim of representing its elements as genus one normal curves of degree n. The methods we describe are practical in the case n = 3 for elliptic curves over the rationals, and have been implemented in MAGMA .
متن کاملInfinite Descent on Elliptic Curves
We present an algorithm for computing an upper bound for the difference of the logarithmic height and the canonical height on elliptic curves. Moreover a new method for performing the infinite descent on elliptic curves is given, using ideas from the geometry of numbers. These algorithms are practical and are demonstrated by a few examples.
متن کاملMinimisation and Reduction of 2-, 3- and 4-coverings of Elliptic Curves
In this paper we consider models for genus one curves of degree n for n = 2, 3 and 4, which arise in explicit n-descent on elliptic curves. We prove theorems on the existence of minimal models with the same invariants as the minimal model of the Jacobian elliptic curve and provide simple algorithms for minimising a given model, valid over general number fields. Finally, for genus one models def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006